Development of the Identity $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

A proof that this identity is true is beyond the scope of this text, but an argument for its correctness can be obtained in the following way.

Let α and β be two angles in standard position (see figure C.1). Let P_1 be the point where the terminal side of α intersects the unit circle, and P_2 be the point where angle β intersects the unit circle. Let P_3 be the point where the angle $\alpha + \beta$ (the sum of the angles α and β) intersects the circle. Let P_0 be the point (1,0). Finally, let P_4 be the point where the terminal side of angle $-\alpha$ intersects the unit circle.

On the unit circle the x- and y-coordinates of a point are the cosine and sine values for the appropriate angle. Thus, the point P_1 has coordinates (cos α ,sin α). The coordinates for the other points are shown in the figure.

Angle $\alpha + \beta$, or angle P_0OP_3 in standard position, has the same measure as angle P_4OP_2 . It is a geometric property that central angles of a circle having equal measure will have chords of equal length. Thus, the chords P_3P_0 and P_2P_4 have the same length. The length of a line segment with end points (x_1,y_1) and (x_2,y_2) is given by the distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

We apply this to the chords mentioned above.

Let $d_1 = \text{length of } P_3 P_0$, and $d_2 = \text{length of } P_2 P_4$.

$$d_1 = d_2$$

$$\sqrt{(\cos(\alpha + \beta) - 1)^2 + (\sin(\alpha + \beta) - 0)^2}$$

$$= \sqrt{(\cos \beta - \cos \alpha)^2 + (\sin \beta - (-\sin \alpha))^2}$$

We now square both sides.

$$[\cos(\alpha + \beta) - 1]^2 + [\sin(\alpha + \beta) - 0]^2 = (\cos \beta - \cos \alpha)^2 + [\sin \beta - (-\sin \alpha)]^2$$

Performing the indicated operations we obtain

$$\cos^{2}(\alpha + \beta) - 2\cos(\alpha + \beta) + 1 + \sin^{2}(\alpha + \beta)$$

$$= \cos^{2}\beta - 2\cos\alpha\cos\beta + \cos^{2}\alpha + \sin^{2}\beta + 2\sin\alpha\sin\beta + \sin^{2}\alpha$$

Then

$$[\cos^{2}(\alpha + \beta) + \sin^{2}(\alpha + \beta)] - 2\cos(\alpha + \beta) + 1$$

= $(\cos^{2}\beta + \sin^{2}\beta) + (\cos^{2}\alpha + \sin^{2}\alpha) + 2\sin\alpha\sin\beta - 2\cos\alpha\cos\beta$

Using the fundamental identity $\sin^2\theta + \cos^2\theta = 1$, we obtain

$$1 - 2\cos(\alpha + \beta) + 1 = 1 + 1 + 2\sin\alpha\sin\beta - 2\cos\alpha\cos\beta$$
$$-2\cos(\alpha + \beta) = 2\sin\alpha\sin\beta - 2\cos\alpha\cos\beta$$
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
 Divide each member by -2

Appendix C - Pg 299Cos(A+B) = CosACosB-SiNASiNB

